

NOTATION \& OPERATIONS

Two coin flips are independent

Two coins:

Dirac Notation
(Bra-ket)

Recall, in Dirac notation, the probability of some outcome

We can express this state as...

2-Qubit Notation
If we measure two quits, how many possible outcomes are there?

$|0\rangle|1\rangle$
$|1\rangle|0\rangle$

As shorthand, we write:
$|1\rangle|0\rangle$ as

So if all measurement outcomes are equally likely, we have a state of...
$\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle+\frac{1}{2}|11\rangle$

Combining Two Qubits

Two independent (not entangled) quits:

Quit $1 \quad a|0\rangle+b|1\rangle$
Quit $2 c|0\rangle+d|1\rangle$
The same two quits, expressed in 2-qubit notation:

$$
a c|00\rangle+a d|01\rangle+b c|10\rangle+b d|11\rangle
$$

Try it yourself!
Put these quits in 2-qubit notation:
Qubit $\times \frac{1}{\sqrt{3}}|0\rangle+\frac{\sqrt{2}}{\sqrt{3}}|1\rangle$
Qubit y $\quad \frac{1}{2}|0\rangle+\frac{\sqrt{3}}{2}|1\rangle$
(Check your answer on the next page!)

Vector Notation
The 2-qubit state from the previous page can also be written as a vector!

Linear Algebra
Matrix multiplication is used to perform gate operations

Try it yourself!

Find more Quantum Computing zines here:
https://www,epigc.cs.uchicago,edu/resources/

November 2020 (V)
This work is funded in part by EPIQC, an NSF Expedition in Computing, under grant 1730449

