

Variational Quantum Eigensolvers

Computational Challenge

Original Article

Scaling up Hartree-Fock calculations on Tianhe-2

International Journal of HIGH PERFORMANCE COMPUTING APPLICATIONS

The International Journal of High Performance Computing Applications 1–18
© The Author(s) 2015
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342015592960
hpc.sagepub.com

\$SAGE

Edmond Chow¹, Xing Liu¹, Sanchit Misra², Marat Dukhan¹, Mikhail Smelyanskiy², Jeff R. Hammond², Yunfei Du³, Xiang-Ke Liao³ and Pradeep Dubey²

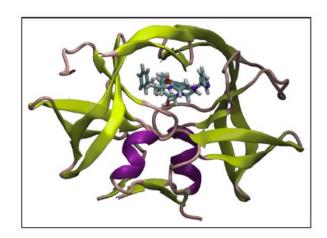


Figure 4. Indinavir bound to HIV-II protease (pdb code IHSG).

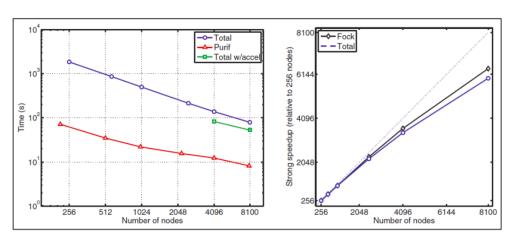
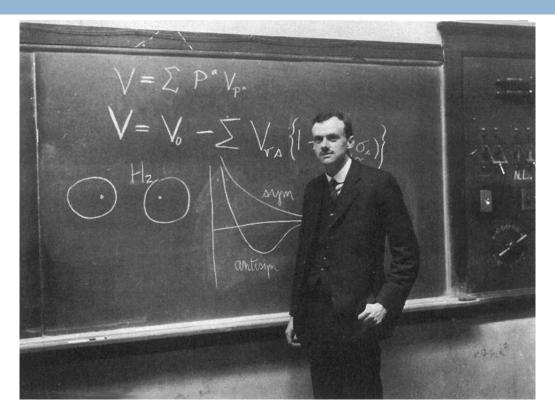


Figure 6. Timings and speedup for one SCF iteration for Ihsg_180 (27,394 basis functions) on Tianhe-2.

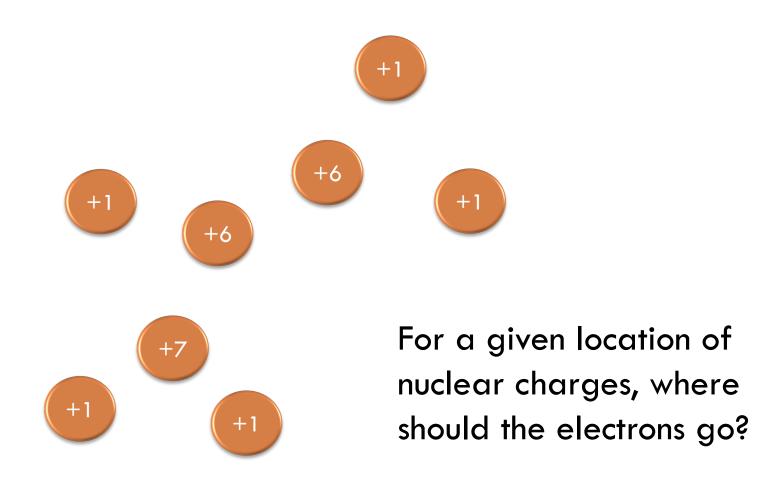
The problem with electrons



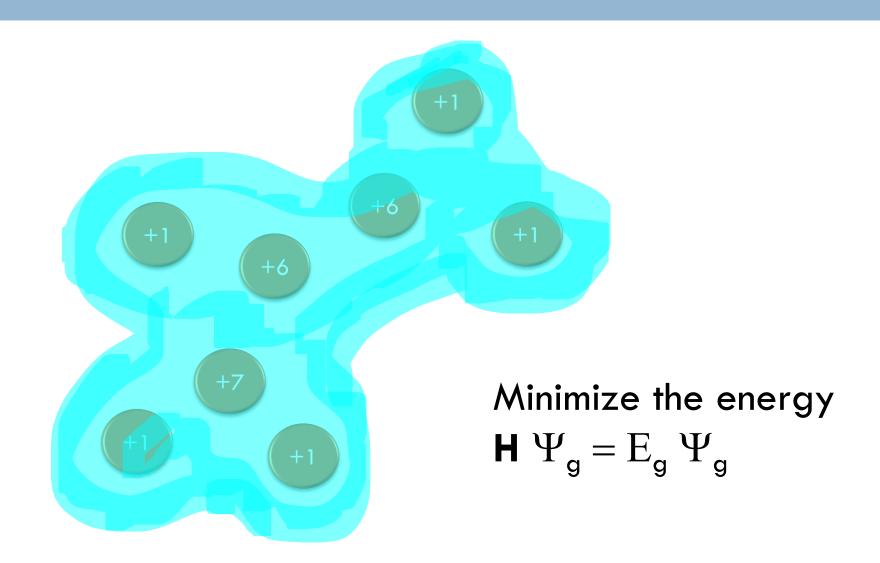
The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

P.A.M. Dirac, Proc. R. Soc. A 123, 714 (1929)

Where should the electrons go?



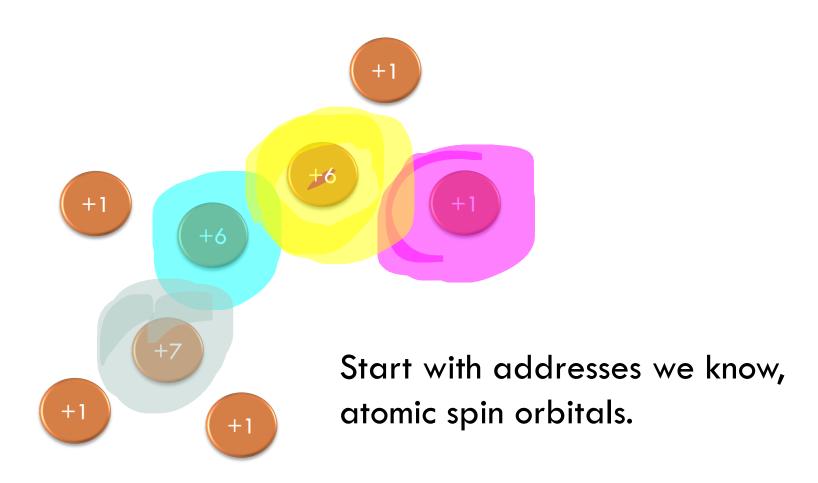
Ground state wavefunction



Simple rules → Hard problem

- □ H is made from simple parts
 - Electrons have kinetic energy
 - Electrons repel each other
 - Electrons are attracted to nuclei
- □ Electrons have an additional property that if two switch addresses the wavefunction gains a − sign
 - Leads to Pauli exclusion principle
 - no two electrons have the same address
- □ How do we choose addresses?

Start with something you know



 $\Box H = \sum h_{jk} b^{\dagger}_{j} b_{k} + \sum v_{jklm} b^{\dagger}_{j} b^{\dagger}_{k} b_{l} b_{m}$ Kinetic energy and attraction to nuclei

$$= H = \sum_{i=1}^{n} \mathbf{h}_{ik} \mathbf{b}_{i}^{\dagger} \mathbf{b}_{k} + \sum_{i=1}^{n} \mathbf{v}_{iklm} \mathbf{b}_{i}^{\dagger} \mathbf{b}_{k}^{\dagger} \mathbf{b}_{l} \mathbf{b}_{m}$$

$$+1$$

$$+6$$

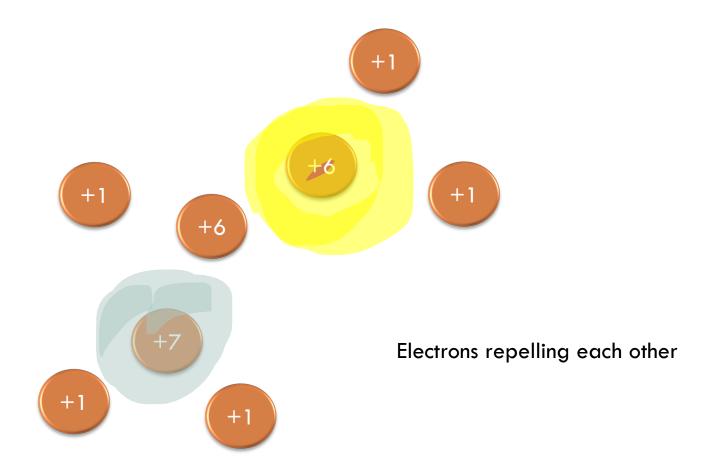
$$+1$$

$$+1$$

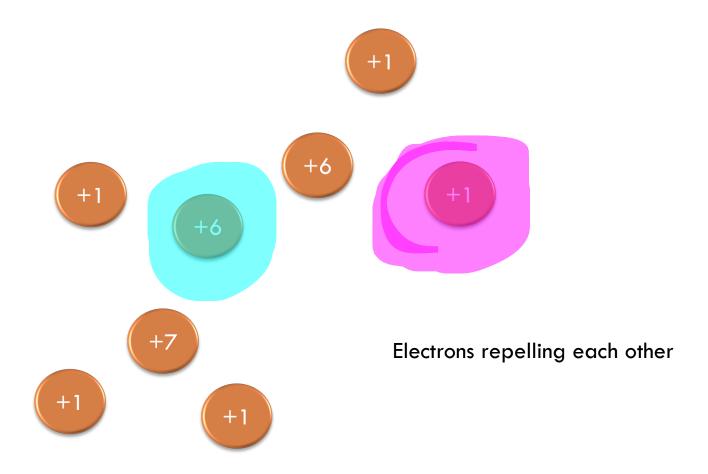
$$+6$$

$$Kinetic energy and attraction to nuclei$$

$$\Box H = \sum h_{jk} b^{\dagger}_{j} c_{k} + \sum v_{jklm} b^{\dagger}_{j} b^{\dagger}_{k} b_{l} b_{m}$$



$$\Box H = \sum h_{jk} b^{\dagger}_{j} b_{k} + \sum v_{jklm} b^{\dagger}_{j} b^{\dagger}_{k} b_{l} b_{m}$$



Good news and bad news

□ Good news:

□ For m addresses only m⁴ + m² terms in H

□ Bad news:

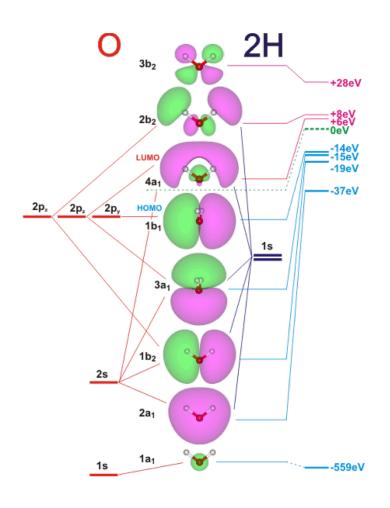
- For n electrons, there are m!/(n!)(m-n!) possible "classical" configurations
- \blacksquare True ground state is described by superposition over all of these configurations: $\Psi_{\bf q} = \Sigma \; {\bf c}_{\bf k} \phi_{\bf k}$

■ Mixed news:

While many molecules can be well approximated by a superposition over a small number of classical configurations, important classes of molecules and materials, such as catalysts and high T_c superconductors, cannot.

Molecules

- □ Water H₂O
- □ 2+6+2 electrons
- How many addresses?
 - □ Simplest model: 14
 - 3003 states
 - cc-pVTZ model: 116
 - \blacksquare 8x10²³ states



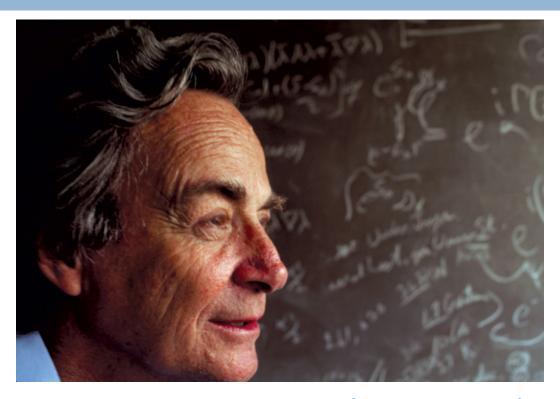
Classical Computer

Uses >kⁿ electrons to represent the exact state of n electrons

■ Molecule

Uses n electrons to represent n electrons

Disruptive Idea



"Let the computer itself be built of quantum mechanical elements which obey quantum mechanical laws."

R. Feynman, Int. J. Theor. Phys. 21, 467 (1982)

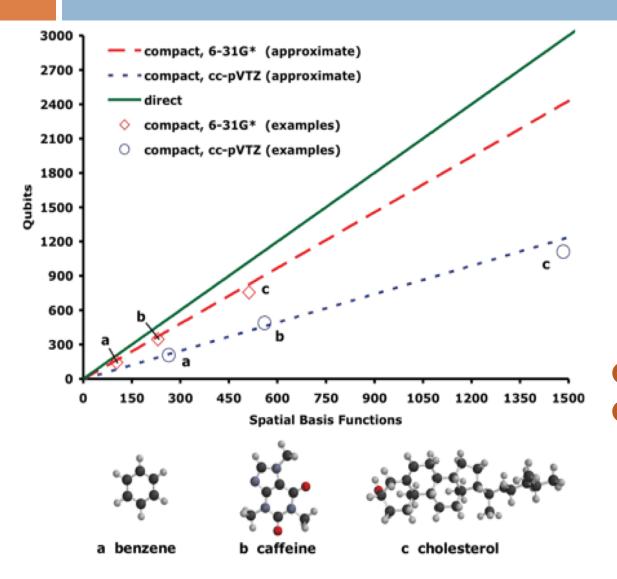
Extremely Disruptive Idea

N=PQ

Factoring numbers breaks the RSA encryption scheme. Makes the internet even less safe. (HTTPS, etc.)

P.W. Shor, *Proc. of 35th FOCS*, 124 (1994)

Ground State Energy Estimation



D.S. Abrams and S. Lloyd, *Phys. Rev. Lett.* **83**, 5162 (1999).

A. Aspuru-Guzik, A. Dutoi, P. Love, and M. Head-Gordon Science **309**, 1704 (2005).

Chemistry on a QC
Configurations are cheap

Classical Computer

■Uses >kⁿ electrons to represent the exact state of n electrons

■ Molecule

Uses n electrons to represent n electrons

Quantum Computer

Uses kn electrons to represent n electrons

Mapping Electrons to Qubits

$$\mathbf{H} = \sum_{p,q} h_{p,q} b_p^{\dagger} b_q + \sum_{p,q,r,s} h_{p,q,r,s} b_p^{\dagger} b_q^{\dagger} b_r b_s$$

Jordan-Wigner

$$b_{p}^{\dagger} = (X - iY)_{p} Z_{p+1} Z_{p+2} Z_{p+3} Z_{n-1} Z_{n}$$

$$b_{p}^{\dagger} b_{q}^{\dagger} + b_{q}^{\dagger} b_{p}^{\dagger} = X_{p} Z_{p+1} ... Z_{q-1} X_{q}^{\dagger} + Y_{p} Z_{p+1} ... Z_{q-1} Y_{q}^{\dagger}$$

Other maps (Bravyi-Kitaev, parity maps, ..)

Algorithms

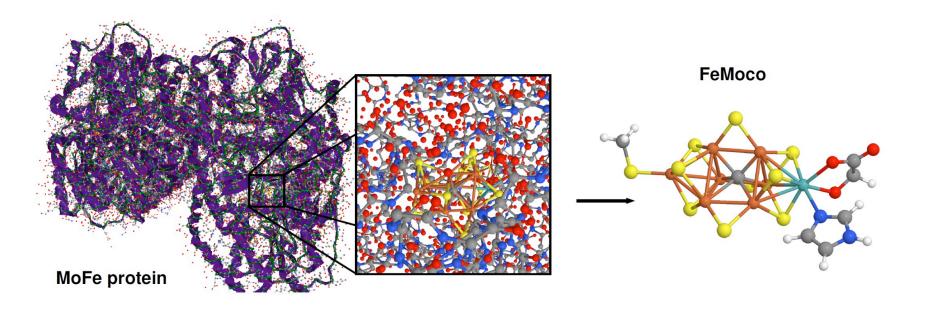
- Quantum Phase Estimation
 - Requires state preparation
 - Measures the energy by applying controlled dynamics and using Quantum Fourier Transform to yield energy
 - Measurement circuit depth: Polynomial in the problem size
 - Projects state to an eigenstate of the dynamics
- □ Variational Quantum Eigensolver
 - Requires state preparation
 - Measures energy term by term
 - Measurement circuit depth: Constant in the problem size
 - Update state preparation to minimize energy

QPE: Cost of generating U

Year	Reference	Basis	Algorithm	Oracle T Gates	PEA Queries	Total T Gates
2005	Aspuru-Guzik et al. [7]	Gaussians	Trotterization	$\mathcal{O}(\operatorname{poly}(N/\epsilon))$	$\mathcal{O}(\operatorname{poly}(N/\epsilon))$	$\mathcal{O}(\operatorname{poly}(N/\epsilon))$
2010	Whitfield et al. [37]	Gaussians	Trotterization	$\mathcal{O}\left(N^4\log\left(1/\epsilon\right)\right)$	$\mathcal{O}\left(\operatorname{poly}\left(N/\epsilon\right)\right)$	$\mathcal{O}\left(\operatorname{poly}\left(N/\epsilon\right)\right)$
2013	Wecker et al. [38]	Gaussians	Trotterization	$\mathcal{O}\left(N^4\log\left(1/\epsilon\right)\right)$	$\mathcal{O}\left(N^6/\epsilon^{3/2} ight)$	$\mathcal{O}\left(rac{N^{10}\log(1/\epsilon)}{\epsilon^{3/2}} ight)$
2014	McClean et al. [39]	Gaussians	Trotterization	$\mathcal{O}\left(\sim N^2\log\left(1/\epsilon\right)\right)$	$\mathcal{O}\left(N^6/\epsilon^{3/2} ight)$	$\mathcal{O}\left(\sim rac{N^8 \log(1/\epsilon)}{\epsilon^{3/2}} ight)$
2014	Poulin et al. [40]	Gaussians	Trotterization	$\mathcal{O}\left(N^4\log\left(1/\epsilon\right)\right)$	$\mathcal{O}\left(\sim N^2/\epsilon^{3/2}\right)$	$\mathcal{O}\left(\sim rac{N^6\log(1/\epsilon)}{\epsilon^{3/2}} ight)$
2014	Babbush et al. [41]	Gaussians	Trotterization	$\mathcal{O}\left(N^4\log\left(1/\epsilon\right)\right)$	$\mathcal{O}\left(\sim N/\epsilon^{3/2}\right)$	$\mathcal{O}\left(\sim rac{N^5\log(1/\epsilon)}{\epsilon^{3/2}} ight)$
2015	Babbush et al. [42]	Gaussians	Taylorization	$\widetilde{\mathcal{O}}(N)$	$\mathcal{O}\left(\frac{N^4\log(N/\epsilon)}{\epsilon\log\log(N/\epsilon)}\right)$	$\widetilde{\mathcal{O}}(N^5/\epsilon)$
2016	Low <i>et al.</i> [25]	Gaussians	Qubitization	$\widetilde{\mathcal{O}}\left(N ight)$	$\mathcal{O}\left(\frac{N^4}{\epsilon} + \frac{\log(N/\epsilon)}{\epsilon \log\log(N/\epsilon)}\right)$	$\widetilde{\mathcal{O}}\left(N^5/\epsilon ight)$
2017	Babbush et al. [43]	Plane Waves	Taylorization	$\widetilde{\mathcal{O}}\left(N\right)$	$\mathcal{O}\left(\frac{N^{8/3}\log(N/\epsilon)}{\epsilon\log\log(N/\epsilon)}\right)$	$\widetilde{\mathcal{O}}(N^{11/3}/\epsilon)$
2017	Berry et al. [26]	Plane Waves	Qubitization	$\widetilde{\mathcal{O}}\left(N\right)$	$\mathcal{O}(N^{8/3}/\epsilon)$	$\widetilde{\mathcal{O}}(N^{11/3}/\epsilon)$
2018	Kivlichan et al. [44]	Plane Waves	Trotterization	$\mathcal{O}\left(N^2 + N\log N\log(1/\epsilon)\right)$	$\mathcal{O}\left(\sim N^{3/2}/\epsilon^{3/2}\right)$	$\mathcal{O}\left(\sim N^{7/2}/\epsilon^{3/2}\right)$
2018	This paper	Plane Waves	Qubitization	$\mathcal{O}(N + \log(1/\epsilon))$	$\mathcal{O}\left(N^2/\epsilon\right)$	$\mathcal{O}\left(\frac{N^3 + N^2 \log(1/\epsilon)}{\epsilon}\right)$

Babbush et al. arXiv:1805.03662

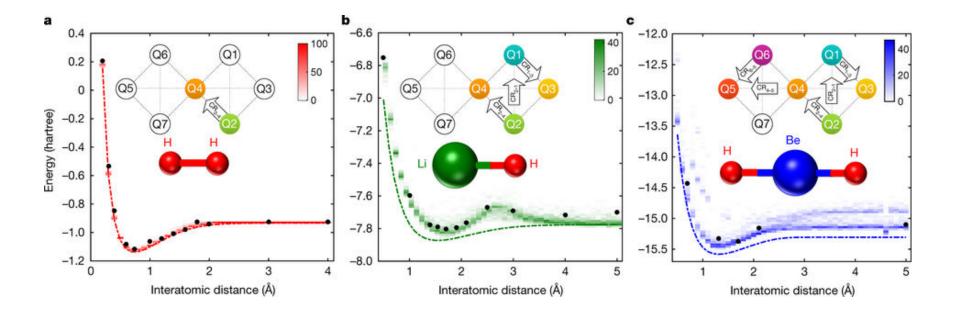
Chemistry Application



Estimated number of gates for QPE: 10^{15} M. Reiher et al. PNAS **114**, 7555 (2017) New methods: $\sim 10^{12}$

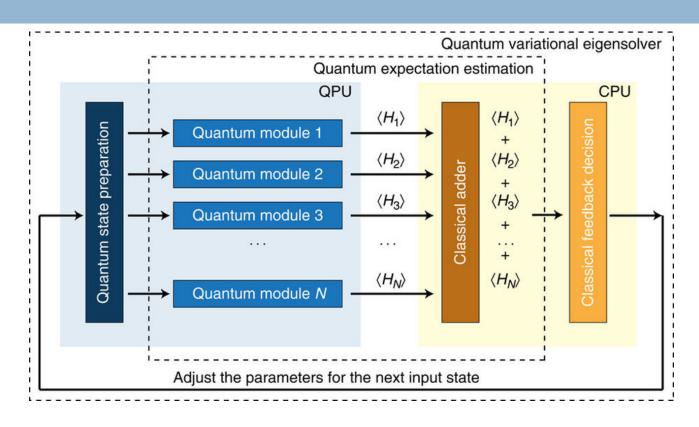
Current number of gates: 10³ Based on error rate of 10⁻³

Where is the field now?



IBM Superconductors: A. Kandala et al. Nature 549, 242 (2017)

Variational Quantum Eigensolver



- 1. Start with a wavefunction ansatz
- 2. Minimize the sum of terms individually

Peruzzo et al. Nat. Commun. 5, 4213 (2014)

Advantage: Smaller depth circuits

Disadvantage: Accuracy limited by sampling, no projection to the ground state

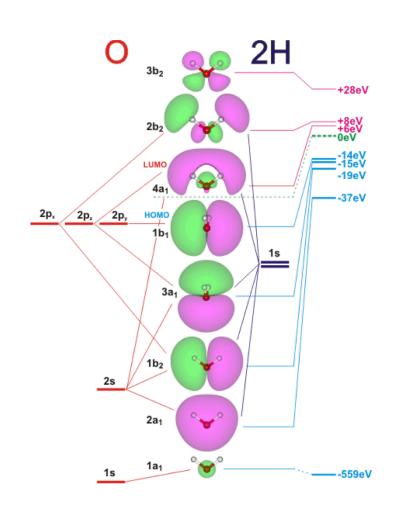
Unitary Coupled Cluster

$$|\Psi\rangle = e^{T - T^{\dagger}} |\Phi\rangle_{\text{ref}}$$

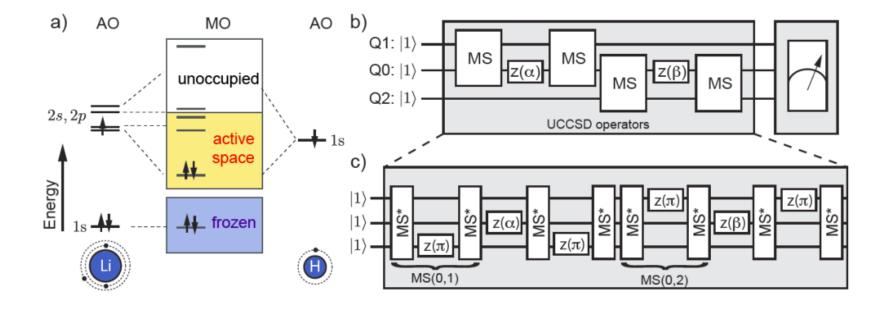
$$T = T_1 + T_2 + T_3 + \dots + T_N$$

$$T_1 = \sum_{p,q} t_{p,q} b_p^{\dagger} b_q$$

$$T_2 = \sum_{p,q} t_{p,q,r,s} b_p^{\dagger} b_q^{\dagger} b_r b_s$$

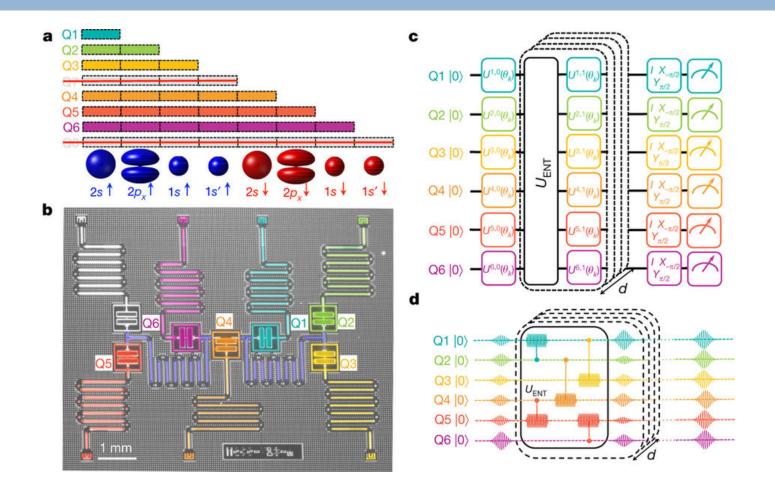


Ion Trap Implementation



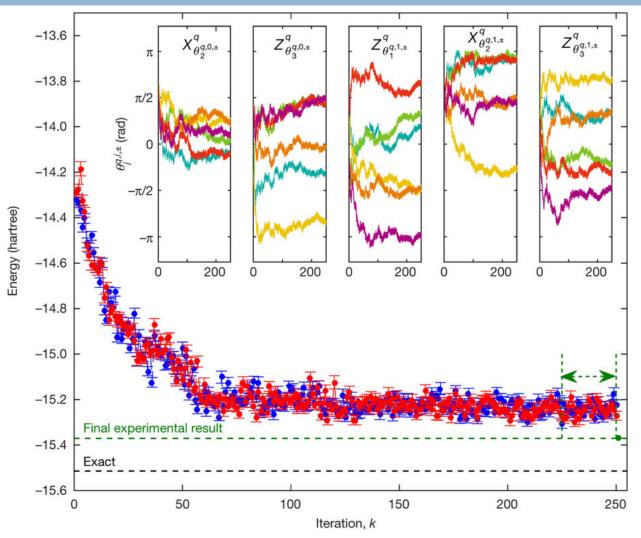
Hempel et al. arXiv:1803.10238

Machine Ansatz



A. Kandala et al. Nature **549**, 242 (2017)

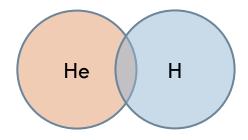
Example of convergence



A. Kandala et al. Nature 549, 242 (2017)

State Space Reduction

HeH⁺



4 spin-orbitals:
Is electron on He or H?
Is electron spin up or down?

4 qubits

Occupation of orbitals $|He \uparrow, He \downarrow, H \uparrow, H \downarrow >$

3 qubits

Hamiltonian preserves number of electrons and we are interested in the 2 electron problem.

Reduces to 6 states

2 qubits

Hamiltonian preserves total spin and we are interested in one spin up and one spin down.

Reduces to 4 states