Intro and Motivation:
Closing the Gap Between Quantum Algorithms
and Hardware through Software-Enabled
Vertical Integration and Co-Design

Fred Chong

Seymour Goodman Professor @ | nt el‘)
Department of Computer Science (P
University of Chicago .

WY Lead PI, the EPiQC Project, 4'.) Al
EPI an NSF Expedition in Computing o AQOSN i Em%SY

With Margaret Martonosi, Ken Brown, Peter Shor, Eddie Farhi, Aram
Harrow, Diana Franklin, David Schuster, John Reppy, and Danielle
Harlow (UChicago, MIT, Princeton, Duke, UCSB)

{’i 3 PRINCETON
UNIVERSITY m WP

 Tutorial Schedule

m 1:00 - 1:15 Install Tutorial Software

m 1:15-1:45 Intro and Research Challenges (Fred Chong)

m 1:45 - 2:40 Tools for QC Arch Research (Margaret Martonosi)

s 2:40 - 3:00 Quantum Basics and Alg Demo (Ali Javadi-Abhari)

m 3:00 - 3:30 Experiment with Basic Algorithms

= 3:30 - 4:00 Break

x 4:00 - 4:30 Quantum Approximate Optimization Algs (Peter Shor)
x 4:30 - 5:00 Quantum Chemistry Algorithms (Ken Brown)

m 5:00- 5:30 Experiment with Chemistry Demo

‘ Why Quantum Computing?

= Fundamentally change what is computable Il

o The only means to potentially scale computation exponentially with the
number of devices
= Solve currently intractable problems in chemistry, simulation, and
optimization
o Could lead to new nanoscale materials, better photovoltaics, better nitrogen
fixation, and more

= A new industry and scaling curve to accelerate key applications

o Not a full replacement for Moore’s Law, but perhaps helps in key domains
s Lead to more insights in classical computing

o Previous insights in chemistry, physics and cryptography

o Challenge classical algorithms to compete w/ quantum algorithms

| NISQ

Now is a privileged time in the history of science and
technology, as we are witnessing the opening of the NISQ
era (where NISQ = noisy intermediate-scale quantum).

— John Preskill, Caltech

IBM Innsbruck Google
\ 50 superconductor qubits 20 atomic ion qubits 72 supercond qubits /

17:40 4

 The Algorithms to Machines Gap

100000 #Qubits Needed

1000000
IGrovers Algorithm (Database search)
IShor’s Factoring Alg. (Crypto)

10000

#Qubits 1000 N
| P #Qubits Buildable
00 J| Gap! AR 4

7z -

-
10./”0"—”
1

1995 2000 2005 2010 2015 2020 2025

Year

 The Algorithms to Machines Gap

100000 #Qubits Needed

1000000
IGrovers Algorithm (Database search)
IShor’s Factoring Alg. (Crypto)

10000

Q Chem,

Quantum Sim,
#QUbItS 1000 QAOA

N _ _
I ” #Qubits Buildable
00 J| Gap! AR 4
& -

-
" o———at.——_drf.———4i.—“‘
1

1995 2000 2005 2010 2015 2020 2025

Year

 The Algorithms to Machines Gap

100000 #Qubits Needed

1000000
IGrovers Algorithm (Database search)
IShor’s Factoring Alg. (Crypto)

10000 Quantum Sim,

: Q Chem, _Desi
#QUbltS 1000 QAOA I Co DGSIgn’
” #Qubits Buildable

Gap! 7 v
100 P _,;"'

-
" o———at.——_drf.———4i.—“‘
1

1995 2000 2005 2010 2015 2020 2025

Year

‘ Closing the Gap: Software-Enabled
Vertical Integration and Co-Design

1000000

IGrovers Algorithm (Database search) Algorithms
100000
IShor’s Factoring Alg. (Crypto) Prog Lang
10000 Quantum Sim, Compiler
Q Chem, Co-Design
1000 QAOA P 4 Architecture
”)
100 Gap' 7 Vv Modeling
s -

- Devices
10

1
1995 2000 2005 2010 2015 2020 2025

Year

 Goal

Develop co-designed algorithms, SW, and HW to
close the gap between algorithms and devices by
100-1000X, accelerating QC by 10-20 years.

1000000

IGrovers Algorithm (Database search) Algorithms
100000
Shor’s Factoring Alg. (Crypto) Prog Lang
10000 Quantum Sim, Result: Compiler
Q Chem, Crossover
1000 QAOA by 2023! Architecture
”’ :
100 Gap! s _ Modeling
72 -

- Devices
10

1
1995 2000 2005 2010 2015 2020 2025

‘ Space-Time Product Limits

- 1x1024

Gate Error ~ 103

Gates

32x32

-D 1024x1

Qubits

17:40

10

‘ Space-Time Product Limits

128x1024

Gate Error ~ 10°°

Gates

Qubits

17:40

11

“Good” Quantum Applications

s Compact problem representation
o Functions, small molecules, small graphs

= High complexity computation
s Compact solution

m Easily-verifiable solution
s Co-processing with classical supercomputers

s Can exploit a small number of quantum
kernels

12

‘ Quantum Compiler Optimizations

= Similar to circuit synthesis for classical ASICs
s Program inputs often known at compile time
= Manage errors and precision

m Scarce resources
o Every qubit and gate is important

17:40 13

Tool Flow

ﬁ 8|npayos |eaisAyd

ﬁ Jaziwndo uonesiuNWwWo)

0

L)

2
g ﬁ 18InpaYdS [Ba1SAUd
3
[an]

ﬁ uopelsus NSYD [eo1sAud

1

1

UOISIBAUOD 8les) Jueis|o] -)ne

i}

ﬁ D)3 10} saje)s olez

ﬁ welbold wnyuenp pjoyess

Architectural Simulator

LLVM Infrastructure

Scaffold tools, 41K lines of code, open source
epiqc.cs.uchicago.edu

14

https://github.com/epiqc/ScaffCC

17:40

https://github.com/epiqc/ScaffCC

Increasing Parallelism

s Compiler Optimizations:

o Loop unrolling, constant propagation, inlining,
function cloning, DAG scheduling
[Heckey+ ASPLOS 2015]

[y
~

[y
N

[
o

o

[=)]

- u

Speedup over Sequential Execution
=y

N

ddeBalla

BF BWT CN Grovers GSE SHA1 Shors TFP
Benchmarks

o

‘ Microarchitecture

Main Memory (instructions & data)

Data

'

Instruction
Fetch

Quantum Coprocessor

Host CPU

Quantum
Control Unit

T

Ex. Register

File

4

Quantum
Instruction

Cache

vy

Physical
Microcode
Unit

Execution

Q Control
Store

Controller ||

t

QmB

Timing Control Unit

2
=3
=1
-
[
=}
o
<

Analog-Digital Interface

Thresl-— Int

Event I Queue 1 ‘
Event 1 Queue n .

Event k Queue 1 .
Event k Queue 2 .

| Addr. Logic |

Event k Queue n .

Quantum Classical Interface

7

Timing Controller

Quantum Chip

>

>

|
Synchronization Clock

[Fu+ Micro 2017 Best Paper]

‘ Breaking ISA Abstraction

=
=
o

=
Qo
o

[¥s]
[=]
1

80 A

70

60

50 A

40 -

Sequence length percentage(%)

gate tIJased é 4". :‘I>
Maximum block width

s Multi-Qubit Operators for QAOA

o Direct translation from compiler to control pulses

[Joint work with David Schuster]

17

 Modularity

<\\\ —

: : N x N optical :
N trapped ion quantum registers CrCSsconnaeaitich N/2 beam splitters

CCD Camera

C. Monroe et al. Phys. Rev. A 89, 022317 (2014)

Modular Chicago QC Hardware architecture (Schuster)

I I I | I Bus

Quantum

Memory Modules Processors

w N

LTI Bl

SHERERRRRRRE o2 |
o TTTETTTTTT <l
~ 1T ETTTETT <l
ol LTETETETT <l
INN RN R R o |

=

Each memory mode an hold a qudit with up to 10 states

Advantages:
* 10 qubits per module, made in the machine shop, not the cleanroom
* 10x fewer transmons, 10x less classical hardware

‘ IL.ocal vs Non-I.ocal Communication

s Maybe 10X bandwidth difference?
= Not that unusual in the classical world
= How does this affect quantum algorithms?

17:40 20

| Static vs Dynamic: Mapping Data

Static spectral and graph
partitioners

Map for clustering

o Probably necessary to get to 1000
qubits

Map for irregular physical
constraints
o Qubit couplings, hardware defects

Granularity of mappings
Interaction with qubit reuse

Spectral communities for 2-level
Bravyi-Haah magic-state factory

21

‘ Static vs Dynamic: Compilation

= Many applications static

s But quantum-classical co-processing may
require dynamic parameters

= How to get a high level of optimization
without complete re-compilation?

o Eg hours for optimal control pulse generation, but
how to adapt to changing rotation angles?

o Similar to partial compilation for FPGAs

22

‘ Multiple Tech vs Comm Overhead

m Classical architectures composed of multiple
technologies: logic, SRAM, DRAM,
interconnect

= With optical transduction, we can have:
a lons for high connectivity

o Superconductors for high speed
o Neutral atoms for storage

17:40

23

‘ Classical Control and Computation

s Temperature boundaries and interconnect
constraints [Tannu+ Micro17/]

o Cryo-cmos: high power, but lower cost to cool 4k

o Superconducting: expensive memory, low power,
but expensive to cool to 10mk

s Real-time control: hard for GHz speeds
o Adaptive algorithms, ML
= Error decoding

o Fast, simple decoder in superconducting logic
m Trade frequency of decoding for quality

24

How do I know if my QC program is

correct?

Check implementation against a
formal specification

Check general quantum

properties

o No-cloning, entanglement,
uncomputation

Checks based on programmer

assertions (quantum simulation)

Heuristic bug-finding systems
[Altadmri SIGCSE15]
Can we check useful properties in

polynomial time for programs with
quantum supremacy?

| What are the right abstractions?

s Specification Languages
o Coq, Hamiltonians
= Programming Languages
a Scaffold, Quipper, Q#, Quil ...
m |Instruction-Set Architectures
o OpenQASM

= Physical Control
o OpenPulse

Algorithms

Prog Lang

Compiler

Architecture

Modeling

Devices

26

‘ Specialization vs Abstraction

Short-term SW

Gap?
M

Long-term SW

100

1000 10000
qubits

100000

17:40

27

 Tutorial Schedule

m 1:00 - 1:15 Install Tutorial Software

m 1:15-1:45 Intro and Research Challenges (Fred Chong)

m 1:45 - 2:40 Tools for QC Arch Research (Margaret Martonosi)

s 2:40 - 3:00 Quantum Basics and Alg Demo (Ali Javadi-Abhari)

m 3:00 - 3:30 Experiment with Basic Algorithms

= 3:30 - 4:00 Break

x 4:00 - 4:30 Quantum Approximate Optimization Algs (Peter Shor)
x 4:30 - 5:00 Quantum Chemistry Algorithms (Ken Brown)

m 5:00- 5:30 Experiment with Chemistry Demo

28

