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Tutorial Schedule

n 1:00 - 1:15 Install Tutorial Software
n 1:15 - 1:45 Intro and Research Challenges (Fred Chong)
n 1:45 - 2:40 Tools for QC Arch Research (Margaret Martonosi)
n 2:40 - 3:00 Quantum Basics and Alg Demo (Ali Javadi-Abhari)
n 3:00 - 3:30 Experiment with Basic Algorithms
n 3:30 - 4:00 Break
n 4:00 - 4:30 Quantum Approximate Optimization Algs (Peter Shor)
n 4:30 - 5:00 Quantum Chemistry Algorithms (Ken Brown)
n 5:00- 5:30 Experiment with Chemistry Demo
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Why Quantum Computing?
n Fundamentally change what is computable

q The only means to potentially scale computation exponentially with the 
number of devices

n Solve currently intractable problems in chemistry, simulation, and 
optimization
q Could lead to new nanoscale materials, better photovoltaics, better nitrogen 

fixation, and more

n A new industry and scaling curve to accelerate key applications
q Not a full replacement for Moore’s Law, but perhaps helps in key domains

n Lead to more insights in classical computing
q Previous insights in chemistry, physics and cryptography
q Challenge classical algorithms to compete w/ quantum algorithms
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NISQ
Now is a privileged time in the history of science and 
technology, as we are witnessing the opening of the NISQ 
era (where NISQ = noisy intermediate-scale quantum). 
– John Preskill, Caltech

417:40

IBM 
50 superconductor qubits

Google
72 supercond qubits

Innsbruck 
20 atomic ion qubits
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Closing the Gap: Software-Enabled 
Vertical Integration and Co-Design

1

10

100

1000

10000

100000

1000000

1995 2000 2005 2010 2015 2020 2025

Grovers Algorithm (Database search)

Shor’s Factoring Alg. (Crypto)

Gap!

Year

Quantum Sim, 
Q Chem, 
QAOA

Modeling

Architecture

Compiler

Prog Lang

Algorithms

Devices

Co-Design



Goal
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Space-Time Product Limits
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Space-Time Product Limits
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“Good” Quantum Applications

n Compact problem representation
q Functions, small molecules, small graphs

n High complexity computation
n Compact solution 
n Easily-verifiable solution
n Co-processing with classical supercomputers
n Can exploit a small number of quantum 

kernels
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Quantum Compiler Optimizations

n Similar to circuit synthesis for classical ASICs
n Program inputs often known at compile time
n Manage errors and precision
n Scarce resources

q Every qubit and gate is important

17:40 13



Tool Flow
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https://github.com/epiqc/ScaffCC

Scaffold tools, 41K lines of code, open source
epiqc.cs.uchicago.edu

https://github.com/epiqc/ScaffCC


Increasing Parallelism

17:40 15

n Compiler Optimizations:
q Loop unrolling, constant propagation, inlining, 

function cloning, DAG scheduling
[Heckey+ ASPLOS 2015] 



Microarchitecture
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[Fu+ Micro 2017 Best Paper] 



Breaking ISA Abstraction

n Multi-Qubit Operators for QAOA 
q Direct translation from compiler to control pulses
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[Joint work with David Schuster]



Modularity 

C. Monroe et al. Phys. Rev. A 89, 022317 (2014)



Modular Chicago QC Hardware architecture (Schuster)

Advantages:
• 10 qubits per module, made in the machine shop, not the cleanroom
• 10x fewer transmons, 10x less classical hardware

Each memory mode an hold a qudit with up to 10 states 



Local vs Non-Local Communication

n Maybe 10X bandwidth difference?
n Not that unusual in the classical world
n How does this affect quantum algorithms?

2017:40



Static vs Dynamic: Mapping Data
n Static spectral and graph 

partitioners
n Map for clustering

q Probably necessary to get to 1000 
qubits

n Map for irregular physical 
constraints
q Qubit couplings, hardware defects

n Granularity of mappings
n Interaction with qubit reuse
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Spectral communities for 2-level 
Bravyi-Haah magic-state factory



Static vs Dynamic: Compilation

n Many applications static
n But quantum-classical co-processing may 

require dynamic parameters
n How to get a high level of optimization 

without complete re-compilation?
q Eg hours for optimal control pulse generation, but 

how to adapt to changing rotation angles?
q Similar to partial compilation for FPGAs
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Multiple Tech vs Comm Overhead

n Classical architectures composed of multiple 
technologies: logic, SRAM, DRAM, 
interconnect

n With optical transduction, we can have:
q Ions for high connectivity
q Superconductors for high speed
q Neutral atoms for storage

2317:40



Classical Control and Computation

n Temperature boundaries and interconnect 
constraints [Tannu+ Micro17]
q Cryo-cmos:  high power, but lower cost to cool 4k
q Superconducting:  expensive memory, low power, 

but expensive to cool to 10mk

n Real-time control: hard for GHz speeds
q Adaptive algorithms, ML

n Error decoding 
q Fast, simple decoder in superconducting logic

n Trade frequency of decoding for quality
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How do I know if my QC program is 
correct?

n Check implementation against a 
formal specification

n Check general quantum 
properties
q No-cloning, entanglement, 

uncomputation
n Checks based on programmer 

assertions (quantum simulation)
n Heuristic bug-finding systems 

[Altadmri SIGCSE15]
n Can we check useful properties in 

polynomial time for programs with 
quantum supremacy?



What are the right abstractions?

n Specification Languages 
q Coq, Hamiltonians

n Programming Languages 
q Scaffold, Quipper, Q#, Quil …

n Instruction-Set Architectures 
q OpenQASM

n Physical Control 
q OpenPulse
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Specialization vs Abstraction
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