
Intro and Motivation:
Closing the Gap Between Quantum Algorithms

and Hardware through Software-Enabled
Vertical Integration and Co-Design

Fred Chong
Seymour Goodman Professor
Department of Computer Science
University of Chicago

Lead PI, the EPiQC Project,
an NSF Expedition in Computing

With Margaret Martonosi, Ken Brown, Peter Shor, Eddie Farhi, Aram
Harrow, Diana Franklin, David Schuster, John Reppy, and Danielle
Harlow (UChicago, MIT, Princeton, Duke, UCSB)

Tutorial Schedule

n 1:00 - 1:15 Install Tutorial Software
n 1:15 - 1:45 Intro and Research Challenges (Fred Chong)
n 1:45 - 2:40 Tools for QC Arch Research (Margaret Martonosi)
n 2:40 - 3:00 Quantum Basics and Alg Demo (Ali Javadi-Abhari)
n 3:00 - 3:30 Experiment with Basic Algorithms
n 3:30 - 4:00 Break
n 4:00 - 4:30 Quantum Approximate Optimization Algs (Peter Shor)
n 4:30 - 5:00 Quantum Chemistry Algorithms (Ken Brown)
n 5:00- 5:30 Experiment with Chemistry Demo

2

Why Quantum Computing?
n Fundamentally change what is computable

q The only means to potentially scale computation exponentially with the
number of devices

n Solve currently intractable problems in chemistry, simulation, and
optimization
q Could lead to new nanoscale materials, better photovoltaics, better nitrogen

fixation, and more

n A new industry and scaling curve to accelerate key applications
q Not a full replacement for Moore’s Law, but perhaps helps in key domains

n Lead to more insights in classical computing
q Previous insights in chemistry, physics and cryptography
q Challenge classical algorithms to compete w/ quantum algorithms

3

NISQ
Now is a privileged time in the history of science and
technology, as we are witnessing the opening of the NISQ
era (where NISQ = noisy intermediate-scale quantum).
– John Preskill, Caltech

417:40

IBM
50 superconductor qubits

Google
72 supercond qubits

Innsbruck
20 atomic ion qubits

The Algorithms to Machines Gap

5

1

10

100

1000

10000

100000

1000000

1995 2000 2005 2010 2015 2020 2025

Grovers Algorithm (Database search)

Shor’s Factoring Alg. (Crypto)

Gap!

Year

#Qubits

#Qubits Needed

#Qubits Buildable

The Algorithms to Machines Gap

6

1

10

100

1000

10000

100000

1000000

1995 2000 2005 2010 2015 2020 2025

Grovers Algorithm (Database search)

Shor’s Factoring Alg. (Crypto)

Gap!

Year

#Qubits

#Qubits Needed

#Qubits Buildable

Quantum Sim,
Q Chem,
QAOA

The Algorithms to Machines Gap

7

1

10

100

1000

10000

100000

1000000

1995 2000 2005 2010 2015 2020 2025

Grovers Algorithm (Database search)

Shor’s Factoring Alg. (Crypto)

Gap!

Year

#Qubits

#Qubits Needed

#Qubits Buildable

Quantum Sim,
Q Chem,
QAOA

Co-Design

Closing the Gap: Software-Enabled
Vertical Integration and Co-Design

1

10

100

1000

10000

100000

1000000

1995 2000 2005 2010 2015 2020 2025

Grovers Algorithm (Database search)

Shor’s Factoring Alg. (Crypto)

Gap!

Year

Quantum Sim,
Q Chem,
QAOA

Modeling

Architecture

Compiler

Prog Lang

Algorithms

Devices

Co-Design

Goal

1

10

100

1000

10000

100000

1000000

1995 2000 2005 2010 2015 2020 2025

Grovers Algorithm (Database search)

Shor’s Factoring Alg. (Crypto)

Gap!

Year

Quantum Sim,
Q Chem,
QAOA

Result:
Crossover
by 2023!

Modeling

Architecture

Compiler

Prog Lang

Algorithms

Devices

Develop co-designed algorithms, SW, and HW to
close the gap between algorithms and devices by
100-1000X, accelerating QC by 10-20 years.

C
o-D

esign

Space-Time Product Limits

17:40 10

Qubits

Gates

1024x1

1x1024

Gate Error ~ 10-3

32x32

Space-Time Product Limits

17:40 11

Qubits

Gates

Gate Error ~ 10-5

128x1024

“Good” Quantum Applications

n Compact problem representation
q Functions, small molecules, small graphs

n High complexity computation
n Compact solution
n Easily-verifiable solution
n Co-processing with classical supercomputers
n Can exploit a small number of quantum

kernels

12

Quantum Compiler Optimizations

n Similar to circuit synthesis for classical ASICs
n Program inputs often known at compile time
n Manage errors and precision
n Scarce resources

q Every qubit and gate is important

17:40 13

Tool Flow

17:40 14

LLVM Infrastructure

M
od

ifi
ed

 C
la

ng
 P

ar
se

r

C
on

ve
rs

io
n

to
 R

ev
er

si
bl

e
C

irc
ui

t

C
la

ss
ic

al
 C

on
tro

l R
es

ol
ut

io
n

LL
V

M
 In

te
rm

ed
ia

te
 R

ep
re

se
nt

at
io

n

R
es

ou
rc

e
E

st
im

at
io

n

M
od

ul
e

In
lin

in
in

g
an

d
Fl

at
te

ni
ng

N
o-

C
lo

ni
ng

 V
er

ifi
ca

tio
n

Q
ub

it
R

ed
un

da
nc

y

Compilation Program
Checks

Fa
ul

t-T
ol

er
an

t G
at

e
C

on
ve

rs
io

n

S
ca

ffo
ld

 Q
ua

nt
um

 P
ro

gr
am

D
ec

om
po

si
ng

 to
 S

ta
nd

ar
d

G
at

es

Ze
ro

 S
ta

te
s

fo
r E

C
C

Fault-Tolerant Redundancies

M
ag

ic
 S

ta
te

s
fo

r T
 G

at
es

E
P

R
 s

ta
te

s
fo

r T
el

ep
or

ta
tio

n

Architectural Simulator

Lo
gi

ca
l Q

A
S

M
 G

en
er

at
io

n

LP
FS

 S
ch

ed
ul

er

Logical
Backend

Lo
gi

ca
l S

ch
ed

ul
e

P
hy

si
ca

l S
ch

ed
ul

e

P
hy

si
ca

l Q
A

S
M

 G
en

er
at

io
n

Physical
Backend

P
hy

si
ca

l S
ch

ed
ul

er

C
om

m
un

ic
at

io
n

O
pt

im
iz

er

https://github.com/epiqc/ScaffCC

Scaffold tools, 41K lines of code, open source
epiqc.cs.uchicago.edu

https://github.com/epiqc/ScaffCC

Increasing Parallelism

17:40 15

n Compiler Optimizations:
q Loop unrolling, constant propagation, inlining,

function cloning, DAG scheduling
[Heckey+ ASPLOS 2015]

Microarchitecture

16

[Fu+ Micro 2017 Best Paper]

Breaking ISA Abstraction

n Multi-Qubit Operators for QAOA
q Direct translation from compiler to control pulses

17

[Joint work with David Schuster]

Modularity

C. Monroe et al. Phys. Rev. A 89, 022317 (2014)

Modular Chicago QC Hardware architecture (Schuster)

Advantages:
• 10 qubits per module, made in the machine shop, not the cleanroom
• 10x fewer transmons, 10x less classical hardware

Each memory mode an hold a qudit with up to 10 states

Local vs Non-Local Communication

n Maybe 10X bandwidth difference?
n Not that unusual in the classical world
n How does this affect quantum algorithms?

2017:40

Static vs Dynamic: Mapping Data
n Static spectral and graph

partitioners
n Map for clustering

q Probably necessary to get to 1000
qubits

n Map for irregular physical
constraints
q Qubit couplings, hardware defects

n Granularity of mappings
n Interaction with qubit reuse

21

Spectral communities for 2-level
Bravyi-Haah magic-state factory

Static vs Dynamic: Compilation

n Many applications static
n But quantum-classical co-processing may

require dynamic parameters
n How to get a high level of optimization

without complete re-compilation?
q Eg hours for optimal control pulse generation, but

how to adapt to changing rotation angles?
q Similar to partial compilation for FPGAs

22

Multiple Tech vs Comm Overhead

n Classical architectures composed of multiple
technologies: logic, SRAM, DRAM,
interconnect

n With optical transduction, we can have:
q Ions for high connectivity
q Superconductors for high speed
q Neutral atoms for storage

2317:40

Classical Control and Computation

n Temperature boundaries and interconnect
constraints [Tannu+ Micro17]
q Cryo-cmos: high power, but lower cost to cool 4k
q Superconducting: expensive memory, low power,

but expensive to cool to 10mk

n Real-time control: hard for GHz speeds
q Adaptive algorithms, ML

n Error decoding
q Fast, simple decoder in superconducting logic

n Trade frequency of decoding for quality

24

How do I know if my QC program is
correct?

n Check implementation against a
formal specification

n Check general quantum
properties
q No-cloning, entanglement,

uncomputation
n Checks based on programmer

assertions (quantum simulation)
n Heuristic bug-finding systems

[Altadmri SIGCSE15]
n Can we check useful properties in

polynomial time for programs with
quantum supremacy?

What are the right abstractions?

n Specification Languages
q Coq, Hamiltonians

n Programming Languages
q Scaffold, Quipper, Q#, Quil …

n Instruction-Set Architectures
q OpenQASM

n Physical Control
q OpenPulse

26

Modeling

Architecture

Compiler

Prog Lang

Algorithms

Devices

Specialization vs Abstraction

17:40 27

Short-term SW Long-term SW

100 1000 10000 100000

qubits

Gap?

Tutorial Schedule

n 1:00 - 1:15 Install Tutorial Software
n 1:15 - 1:45 Intro and Research Challenges (Fred Chong)
n 1:45 - 2:40 Tools for QC Arch Research (Margaret Martonosi)
n 2:40 - 3:00 Quantum Basics and Alg Demo (Ali Javadi-Abhari)
n 3:00 - 3:30 Experiment with Basic Algorithms
n 3:30 - 4:00 Break
n 4:00 - 4:30 Quantum Approximate Optimization Algs (Peter Shor)
n 4:30 - 5:00 Quantum Chemistry Algorithms (Ken Brown)
n 5:00- 5:30 Experiment with Chemistry Demo

28

