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 Tutorial Schedule

m 1:00 - 1:15 Install Tutorial Software

m 1:15-1:45 Intro and Research Challenges (Fred Chong)

m 1:45 - 2:40 Tools for QC Arch Research (Margaret Martonosi)

s 2:40 - 3:00 Quantum Basics and Alg Demo (Ali Javadi-Abhari)

m 3:00 - 3:30 Experiment with Basic Algorithms

= 3:30 - 4:00 Break

x 4:00 - 4:30 Quantum Approximate Optimization Algs (Peter Shor)
x 4:30 - 5:00 Quantum Chemistry Algorithms (Ken Brown)

m 5:00- 5:30 Experiment with Chemistry Demo




‘ Why Quantum Computing?

= Fundamentally change what is computable Il

o The only means to potentially scale computation exponentially with the
number of devices
= Solve currently intractable problems in chemistry, simulation, and
optimization
o Could lead to new nanoscale materials, better photovoltaics, better nitrogen
fixation, and more

= A new industry and scaling curve to accelerate key applications

o Not a full replacement for Moore’s Law, but perhaps helps in key domains
s Lead to more insights in classical computing

o Previous insights in chemistry, physics and cryptography

o Challenge classical algorithms to compete w/ quantum algorithms




| NISQ

Now is a privileged time in the history of science and
technology, as we are witnessing the opening of the NISQ
era (where NISQ = noisy intermediate-scale quantum).

— John Preskill, Caltech

IBM Innsbruck Google
\ 50 superconductor qubits 20 atomic ion qubits 72 supercond qubits /
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 The Algorithms to Machines Gap
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‘ Closing the Gap: Software-Enabled
Vertical Integration and Co-Design
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 Goal

Develop co-designed algorithms, SW, and HW to
close the gap between algorithms and devices by
100-1000X, accelerating QC by 10-20 years.
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‘ Space-Time Product Limits
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‘ Space-Time Product Limits
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Gate Error ~ 10°°
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“Good” Quantum Applications

s Compact problem representation
o Functions, small molecules, small graphs

= High complexity computation
s Compact solution

m Easily-verifiable solution
s Co-processing with classical supercomputers

s Can exploit a small number of quantum
kernels
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‘ Quantum Compiler Optimizations

= Similar to circuit synthesis for classical ASICs
s Program inputs often known at compile time
= Manage errors and precision

m Scarce resources
o Every qubit and gate is important
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Tool Flow
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Architectural Simulator

LLVM Infrastructure

Scaffold tools, 41K lines of code, open source
epiqc.cs.uchicago.edu
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https://github.com/epiqc/ScaffCC
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https://github.com/epiqc/ScaffCC

Increasing Parallelism

s Compiler Optimizations:

o Loop unrolling, constant propagation, inlining,
function cloning, DAG scheduling
[Heckey+ ASPLOS 2015]
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‘ Microarchitecture

Main Memory (instructions & data)

Data

'

Instruction
Fetch

Quantum Coprocessor

Host CPU

Quantum
Control Unit

T

Ex. Register

File

4

Quantum
Instruction

Cache

vy

Physical
Microcode
Unit

Execution

Q Control
Store

Controller ||

t

QmB

Timing Control Unit

2
=3
=1
-
[
=}
o
<

Analog-Digital Interface

Thresl-— Int

Event I Queue 1 ‘
Event 1 Queue n .

Event k Queue 1 .
Event k Queue 2 .

| Addr. Logic |

Event k Queue n .

Quantum Classical Interface

7

Timing Controller

Quantum Chip

>

>

|
Synchronization Clock

[Fu+ Micro 2017 Best Paper]




‘ Breaking ISA Abstraction
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s Multi-Qubit Operators for QAOA

o Direct translation from compiler to control pulses

[Joint work with David Schuster]
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 Modularity
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C. Monroe et al. Phys. Rev. A 89, 022317 (2014)




Modular Chicago QC Hardware architecture (Schuster)
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Each memory mode an hold a qudit with up to 10 states

Advantages:
* 10 qubits per module, made in the machine shop, not the cleanroom
* 10x fewer transmons, 10x less classical hardware



‘ IL.ocal vs Non-I.ocal Communication

s Maybe 10X bandwidth difference?
= Not that unusual in the classical world
= How does this affect quantum algorithms?
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| Static vs Dynamic: Mapping Data

Static spectral and graph
partitioners

Map for clustering

o Probably necessary to get to 1000
qubits

Map for irregular physical
constraints
o Qubit couplings, hardware defects

Granularity of mappings
Interaction with qubit reuse

Spectral communities for 2-level
Bravyi-Haah magic-state factory
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‘ Static vs Dynamic: Compilation

= Many applications static

s But quantum-classical co-processing may
require dynamic parameters

= How to get a high level of optimization
without complete re-compilation?

o Eg hours for optimal control pulse generation, but
how to adapt to changing rotation angles?

o Similar to partial compilation for FPGAs
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‘ Multiple Tech vs Comm Overhead

m Classical architectures composed of multiple
technologies: logic, SRAM, DRAM,
interconnect

= With optical transduction, we can have:
a lons for high connectivity

o Superconductors for high speed
o Neutral atoms for storage

17:40
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‘ Classical Control and Computation

s Temperature boundaries and interconnect
constraints [Tannu+ Micro17/]

o Cryo-cmos: high power, but lower cost to cool 4k

o Superconducting: expensive memory, low power,
but expensive to cool to 10mk

s Real-time control: hard for GHz speeds
o Adaptive algorithms, ML
= Error decoding

o Fast, simple decoder in superconducting logic
m Trade frequency of decoding for quality
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How do I know if my QC program is

correct?

Check implementation against a
formal specification

Check general quantum

properties

o No-cloning, entanglement,
uncomputation

Checks based on programmer

assertions (quantum simulation)

Heuristic bug-finding systems
[Altadmri SIGCSE15]
Can we check useful properties in

polynomial time for programs with
quantum supremacy?




| What are the right abstractions?

s Specification Languages
o Coq, Hamiltonians
= Programming Languages
a Scaffold, Quipper, Q#, Quil ...
m |Instruction-Set Architectures
o OpenQASM

= Physical Control
o OpenPulse

Algorithms

Prog Lang

Compiler

Architecture

Modeling

Devices
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‘ Specialization vs Abstraction

Short-term SW

Gap?
M
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