

Just the basics

Linear Algebra

T-shire labels often say S, M, or L could mean almost anything

But in the context of a t-shirt, they represent the minimum amount of information needed to determine the size

Vectors
A vector is just an ordered lists of numbers

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad\left[\begin{array}{l}
\pi \\
0
\end{array}\right] \quad\left[\begin{array}{c}
2019 \\
6 \\
28
\end{array}\right]
$$

In isolation, S, M, or L S? L? But without
 any context, a vector such as $\left[\begin{array}{l}0.6 \\ 0.8\end{array}\right]$ could be anything!

Coordinates?

A Polynomial?

$$
f(x)=0.6 x+0.8
$$

Matrices
A matrix is just a 2 -dimensional ordered collection of numbers

$$
\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{cc}
2 & 4 \\
-3 & 8
\end{array}\right]
$$

And like a vector, a matrix can mean a lot of different things

A way to store data

A quantum stake?

$$
0.6|0\rangle+0.8|1\rangle
$$

Bigger Matrices
We use bigger matrices to transform bigger vectors.
$\left[\begin{array}{cccc}a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]=\left[\begin{array}{c}a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, n} x_{n} \\ a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, n} x_{n} \\ \vdots \\ a_{n, 1} x_{1}+a_{n, 2} x_{2}+\cdots+a_{n, n} x_{n}\end{array}\right]$

The CNOT gate is a quantum gate that operates on 2 quits, so we use a 4×4 matrix to represent it.

Try out the example below of a CNOT gate acting on a two quit state!

Find more Quantum Computing zines here:
https://www.epiqc.cs.uchicago.edu/resources/

July 2019
This work is funded in part by EPiQC, an NSF Expedition in Computing, under grant 1730449

