NEUTRAL ATOM

QUANTUM COMPUTERS

NEUTRAL ATOMS

- Have equal numbers of protons & electrons (electrically neutral)

Can be in different energy states

"TRAPPING" QUBITS

To be useful as a qubit, a single atom must be caught and held in place.

To do this:

- lasers cool & slow the atoms
- optical tweezers hold them in place

QUANTUM GATES

Single qubit gates

Lasers and microwaves are used to change the energy state of a qubit.

Multi-qubit gates are tricky!

Normally, neutral atoms do not interact with one another when spaced apart.

Exciting a qubit to a high-energy "Rydberg state" allows the qubit to interact with (affect the state of) a nearby qubit

MEASUREMENT

Qubits are measured with lasers

- Qubits in the O state emit light
- Qubits in the 1 state do not

ADVANTAGES

2. No manufacturing errors

Naturally occurring - each qubit is the same

3. Good connectivity

Can be densely packed and individvally controlled

CHALLENGES

1. Individual gubits can be difficult to control

2. Atoms occasionally break free from trap

FIND MORE QUANTUM COMPUTING ZINES HERE:

https://www.epiqc.cs.uchicago.edu/resources/

MARCH 2023

This work is funded in part by EPiQC, an NSF Expedition in Computing, under grant 1730449

