

IN EVERYDAY LIFE SHOW UP ALL THE TIME # CHANCE ... **UNCERTAINTY**

PROBABILITY

fish" caught

PROBABILITY

-0E EXPECT AN UNCERTAIN EVENT TO HOW WANY TIMES ON AVERAGE YOU

%SE 10 SEO =

CHICAGO ... NI NIAS 8'0 CHANCE OF **JHT UNA** È "SUA3H NO SUNAJ THAT A COIN YROBABILITY THE DO NOT DEPEND ON EACH OTHER EVENTS WHOSE PROBABILITIES

ME GET A HEADS IS. **UNA** DUINIAN ZI TI TAHT

SO THE PROBABILITY

WOLTIPLY

PROBABILITIES

INDEPENDENT

TO NOT DEPEND ON EACH OTHER!

HO = 80 × 50

INDEPENDENT EVENTS

→0.6 × 0.2 = 0.12

870=80

degendent events

https://www.epigc.cs.uchicago.edu/resources/

July 2019

This work is funded in part by EPiQC, an NSF Expedition in Computing, under grant 1730449

JUST THE BASICS

QUANTUM COMPUTATIONS

We use probabilities to express the likelihood of each outcome in a quantum computation

And quantum algorithms adjust and refine those probabilities to make the correct outcome the most likely!

COMMON MISTAKES

PROBABILITY IS JUST AN AVERAGE

IF YOU FLIP A COIN AND GET HEADS 6 TIMES IN A ROW, WHAT IS THE PROBABILITY THAT THE NEXT ONE IS HEADS TOO?

ANSWER: IT'S STILL 0.5!

BECAUSE COIN FLIPS ARE INDEPENDENT OF ONE ANOTHER!