This work investigated tradeoffs between gate length and robustness to experimental errors for quantum computers.

The ability to engineer high-fidelity gates on quantum processors in the presence of systematic errors remains the primary barrier to achieving quantum advantage. Quantum optimal control methods have proven effective in experimentally realizing high-fidelity gates, but they require exquisite calibration to be performant. We apply robust trajectory optimization techniques to suppress gate errors arising from system parameter uncertainty. We propose a derivative-based approach that maintains computational efficiency by using forward-mode differentiation. Additionally, the effect of depolarization on a gate is typically modeled by integrating the Lindblad master equation, which is computationally expensive. We employ a computationally efficient model and utilize time-optimal control to achieve high-fidelity gates in the presence of depolarization. We apply these techniques to a fluxonium qubit and suppress simulated gate errors due to parameter uncertainty below 10^-7 for static parameter deviations of the order of 1%. DOI 10.1103/PhysRevApplied.17.014036

T Propson; BE Jackson; J Koch; Z Manchester; DI Schuster