Variational Quantum Algorithms (VQA) are one of the most promising candidates for near-term quantum advantage. Traditionally, these algorithms are parameterized by rotational gate angles whose values are tuned over iterative execution on quantum machines. The iterative tuning of these gate angle parameters make VQAs more robust to a quantum machine’s noise profile. However, the effect of noise is still a significant detriment to VQA’s target estimations on real quantum machines — they are far from ideal. Thus, it is imperative to employ effective error mitigation strategies to improve the fidelity of these quantum algorithms on near-term machines. While existing error mitigation techniques built from theory do provide substantial gains, the disconnect between theory and real machine execution characteristics limit the scope of these improvements. Thus, it is critical to optimize mitigation techniques to explicitly suit the target application as well as the noise characteristics of the target machine. We propose VAQEM, which dynamically tailors existing error mitigation techniques to the actual, dynamic noisy execution characteristics of VQAs on a target quantum machine. We do so by tuning specific features of these mitigation techniques similar to the traditional rotation angle parameters - by targeting improvements towards a specific objective function which represents the VQA problem at hand. In this paper, we target two types of error mitigation techniques which are suited to idle times in quantum circuits: single qubit gate scheduling and the insertion of dynamical decoupling sequences. We gain substantial improvements to VQA objective measurements — a mean of over 3x across a variety of VQA applications, run on IBM Quantum machines. More importantly, while we study two specific error mitigation techniques, the proposed variational approach is general and can be extended to many other error mitigation techniques whose specific configurations are hard to select a priori. Integrating more mitigation techniques into the VAQEM framework in the future can lead to further formidable gains, potentially realizing practically useful VQA benefits on today’s noisy quantum machines. DOI 10.1109/HPCA53966.2022.00029
Gokul Subramanian Ravi, Kaitlin N. Smith, Pranav Gokhale, Andrea Mari, Nathan Earnest, Ali Javadi-Abhari, Frederic T. Chong